
13.2) Derivatives and Integrals of Vector-Valued Functions

1. Review of Differentiation from Calculus I and II:

Say we have a function y  fx, a real-valued function of one real variable. Its graph is a
curve in the x,y plane that passes the vertical line test. We shall refer to this curve as C.

If C has a nonvertical tangent line at a certain point, the slope of the tangent line is obtained
by differentiation. Since y is a function of x, we use ordinary differentiation, which gives us
the derivative of y with respect to x, fx or dy

dx
, in terms of x. Specifically,

fx  limh0
fxh  fx

h
. The quantity fxh  fx

h
is known as the difference quotient. It

represents the slope of the secant line passing through a fixed point x, fx and a variable
point x  h, fx  h. As h approaches zero, the latter point approaches the former point
and the secant line approaches the tangent line. (Of course, in practice, we find the
derivative by using the rules of differentiation studied in Calculus I.)

If fx is a constant function or a linear function, then C is already a line, so the tangent line
coincides with this line itself; hence, the derivative at any point is simply the slope of the
original line (which means the derivative is a fixed value–i.e., it does not vary as x varies).
For other functions, the derivative is not fixed, but rather varies as x varies. For instance, in
the case of y  fx  2x2  5, the derivative is 4x (so the slope of the tangent line is 12
when x is 3, whereas the slope of the tangent line is 20 when x is 5. In such cases, the
derivative is a function of one variable, x.

Now suppose the plane curve C is not the graph of a function–i.e., the curve does not pass
the vertical line test. In practice, C will be the graph of an equation involving x and y (a
relation) that cannot be solved to give us a unique y for every x. We may be able to graph
the equation by hand, as in the case of x2  y2  9. Or we may need to use a computer to
obtain the graph, as in the case of x  yxy  lnxy  yx.

When y is not a function of x, we may find the derivative by using implicit differentiation:
We differentiate both sides of the equation with respect to x, and then solve the resulting
equation for dy

dx
in terms of both x and y. For instance, in the case of x2  y2  9, we get

dy
dx

  x
y . In such cases, the derivative is a function of two variables, x and y. In the case

of x2  y2  9, consider two points that vertically align with each other,  2
2 , 2

2  and

 2
2 ,  2

2 . At the former, we get dy
dx

 1, and at the latter, we get dy
dx

 1. Thus, the
equation of the tangent line at the former point is y  x  2 , whereas the equation of the
tangent line at the latter point is y  x  2 .

When a plane curve has been parameterized, if the curve has a nonvertical tangent line at a
certain point, the slope of the tangent line may be obtained by parametric differentiation,
which gives us the slope in terms of the parameter. You learned this in Calculus II (in
particular, Section 10.2 of your text). Suppose our parameter is t. Generically, our
parametric equations are x  xt, y  yt. Rather than expressing dy

dx
as a function of x
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(as we would do in the case of ordinary differentiation), or as a function of both x and y (as
we would do in the case of implicit differentiation), we instead express dy

dx
as a function of t.

First, we find the derivatives dx
dt

 xt and dy
dt

 yt. We then divide the latter by the
former, and the result is the slope of the tangent line, i.e., dy

dx
 dy

dt
 dx

dt
 yt

xt
.

Suppose the circle x2  y2  9 is parameterized as x  3cos t, y  3sin t. Then dx
dt

 3sin t
and dy

dt
 3cos t. When t  

6 , we get the point  3 3
2 , 3

2 , and we get dx
dt

  3
2 and

dy
dt

 3 3
2 , so dy

dx
 3 3

2   3
2   3 . Here, we numerically evaluated dx

dt
and dy

dt
and then

divided the latter by the former. Instead, we could set up the ratio yt
xt

and then simplify it

before we evaluate numerically. In this case, we would have 3cos t
3sin t , which would simplify to

cot t. Evaluating at 
6 then gives us  3 .

By the way, in Calculus I and II, we dealt only with plane curves–we did not deal with space
curves. Now, in Calculus III, we will be dealing with both types of curves. In both cases, we
will use differentiation to find the tangent line at any point on the curve. However, the
concept of slope applies only to plane curves, not to space curves (i.e., “slope” is an
inherently two-dimensional concept). So when we examine a tangent line to a space
curves, we will not discuss its slope (since this would be meaningless). We can and will
discuss slopes of tangent lines for plane curves.

2. Differentiation of Vector-Valued Functions:

A vector-valued function of one parameter can be differentiated as follows. Assuming the
parameter is t, we define the derivative with respect to t to be limh0

1
h rt  h  rt.

This derivative is denoted rt or d
dt
rt or dr

dt
or Dt rt. We refer to the symbol d

dt
or Dt as

the differentiation operator. Note that the derivative is a vector, not a scalar.

In two dimensions, with rt   xt,yt   xti  ytj, we have

rt   limh0
xth  xt

h
, limh0

yth  yt
h

  limh0
xth  xt

h
i  limh0

yth  yt
h

j.

As a result of the limit, we obtain rt   xt,yt    dx
dt
, dy

dt
  xti  ytj 

dx
dt
i  dy

dt
j.

In three dimensions, with rt   xt,yt, zt   xti  ytj  ztk, we have

rt   limh0
xth  xt

h
, limh0

yth  yt
h

, limh0
zth  zt

h
 

limh0
xth  xt

h
i  limh0

yth  yt
h

j  zth  zt
h

k. As a result of the limit, we obtain

rt   xt,yt, zt    dx
dt
, dy

dt
, dz

dt
  xti  ytj  ztk  dx

dt
i  dy

dt
j  dz

dt
k.

The differentiation operator distributes over the components of a vector-valued function in
the same way that the limit distributes over the components:


d
dt

 xt,yt    d
dt
xt, d

dt
yt 


d
dt

 xt,yt, zt    d
dt
xt, d

dt
yt, d

dt
zt 
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Differentiation Rules:


d
dt
C  0, where C is any constant vector.


d
dt
ut  wt  ut  wt The Addition Rule


d
dt
ut  wt  ut  wt The Subtraction Rule


d
dt
cut  cut The Constant Factor Rule


d
dt
ftut  ftut  ftut Product Rule #1


d
dt
ut  wt  ut  wt  ut  wt Product Rule #2


d
dt
ut  wt  ut  wt  ut  wt Product Rule #3


d
dt
ugt  ugt gt, normally written gtugt The Chain Rule

When rt represents a position function and the parameter t represents time, then rt is
interpreted as the velocity function, in which case we may write vt in place of rt. (In
this context, the curve represented by rt may be referred to as the curve of motion or the
path of motion.)

Notice that vt is a vector. The magnitude of velocity is the speed of motion, vt  |vt|.
We normally just call this the “speed.” (However, there is another kind of speed that we will
discuss later, so sometimes we need to use the complete phrase “speed of motion” to
clarify that we mean the magnitude of velocity.)

 For two-dimensional motion, vt  xt2  yt2  dx
dt

2
 dy

dt

2
.

 For three-dimensional motion, vt  xt2  yt2  zt2 

dx
dt

2
 dy

dt

2
 dz

dt

2
.

Velocity is a vector and speed is a scalar. If we say that “velocity and speed are zero,” we
mean that velocity is the zero vector, 0, and speed is the real number zero, 0. If we say that
“velocity and speed are nonzero,” we mean that velocity is a nonzero vector and speed is a
nonzero real number. (Of course, velocity and speed must be either both zero or both
nonzero–we cannot have one being zero without the other being zero.)

If vt is nonzero, then it has a direction, which represents the instantaneous direction of
motion. This direction will be along the curve’s tangent line at the given point. (To write the
equation of the tangent line, we use the velocity vector as the line’s direction vector.) On
the other hand, if vt  0, then it has no direction, so the instantaneous direction of motion
is undefined.

At any instant where velocity is nonzero, the curve will have a tangent line; the curve is said
to be smooth at such a point. At any instant where velocity is zero, the curve will have a
cusp (also known as a kink or a sharp turn); the curve is not smooth at such a point. When
there is a cusp, the curve may or may not have a tangent line (depending on whether or not
the left-hand tangent coincides with the right-hand tangent).

3



For example, the plane curve y3  x2 or y  x2/3 can be parameterized as x  t3, y  t2.
With this parameterization, we have vt   3t2, 2t . Since v0  0, the curve has a cusp
when t  0, i.e., at the point 0,0. The curve has a vertical tangent line at this point. (Note:
In Calculus I, if we differentiated the equation y  x2/3, we would get dy

dx
 2

3 x
1/3  2

3 3 x
,

which is undefined when x is zero; this makes sense, because a vertical tangent line has
undefined slope.) The curve is smooth at every point other than the origin.

By the way, a curve can have a vertical tangent line even when it is smooth (in other words,
you don’t need a cusp to have a vertical tangent line). A circle, for instance, has two vertical
tangent lines, but it is smooth at every point (i.e., it has no cusps).

The plane curve y2  x3 or y  x3/2 can be parameterized as x  t2, y  t3. With this
parameterization, we have vt   2t, 3t2 . Since v0  0, the curve has a cusp when
t  0, i.e., at the point 0,0. The curve has a horizontal tangent line at this point. (Note: In
Calculus I, if we differentiated the equation y  x3/2, we would get dy

dx
  3

2 x
1/2, which gives

us dy
dx

 0 when x is zero. On the other hand, if we implicitly differentiated the equation
y2  x3, we’d get 2y dy

dx
 3x2, which would give us dy

dx
 3x2

2y provided y is nonzero.)

For the parabola x  t, y  2t2  5, we have position function rt   t,2t2  5 , velocity
function vt   1,4t , and speed function vt  1  16t2 . When t  3, we have the
point 3,13, the position vector  3,13 , the velocity vector  1,12 , and speed
145  12.04. At the point 3,13, the tangent line has parametric equations x  3  t,

y  13  12t.

For the helix x  3cos t, y  3sin t, z  t, we have position function rt   3cos t, 3 sin t, t ,
velocity function vt   3sin t, 3cos t, 1 , and speed function vt  9sin2t  9cos2t  1 
10 . Notice that in this case we have constant speed. (Bear in mind, there are many

possible parameterizations of the curve, some of which might not have constant speed.)
When t  , we have the point 3,0,, the position vector  3,0, , the velocity vector
 0,3,1 , and speed 10  3.162. At the point 3,0,, the tangent line has parametric
equations x  3  0t, y  0  3t, z    1t, in other words, x  3, y  3t, z    t.

In the above example, the speed is constant, but the velocity is not constant. Whereas
speed is a scalar, velocity is a vector, and as such it has both magnitude and direction
(except when it is zero, in which case it has no direction). The magnitude of the velocity
was fixed at 10 , but the direction of the velocity was not fixed–it changes from instant to
instant.

In many applications, we are interested only in the direction of motion, and not in the speed
of motion. In such cases, we do not care how fast our particle is moving, but we do care
about the particle’s direction at any instant. We may also be interested in how the direction
is changing (without any regard to how the speed may be changing). In these situations, we
do not focus on the velocity vector. Instead, we focus on a unit vector (i.e., a vector of
length one) having the same direction as velocity. We call this vector the unit tangent
vector, and we denote it Tt. Of course, we have Tt  1

vt
vt  vt

vt
. Note that Tt is

undefined whenever vt  0.
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 In two dimensions, Tt  xt2  yt21/2  xt,yt .

 In three dimensions, Tt  xt2  yt2  zt21/2  xt,yt, zt .

In the case of the parabola discussed above, Tt  1  16t21/2  1,4t  or
 1

1  16t2
, 4t

1  16t2
.

In the case of the helix discussed above, Tt  1

10
 3sin t, 3cos t, 1  or

 3sin t
10

, 3cos t

10
, 1

10


If we are interested in how the direction is changing, we would need to differentiate Tt with
respect to time, i.e., we would need to find d

dt
Tt  Tt  dT

dt
. This is a rather tricky topic;

we will postpone discussing it for the moment.

On the other hand, it is quite straightforward to consider how velocity is changing. We
simply differentiate vt with respect to time. Since vt  rt, vt  rt, the second
derivative of the position function (which could also be expressed as d2r

dt2
. We call this the

acceleration function, and we denote it at.

 In two dimensions, at   xt,yt    d2x
dt2

, d2y

dt2
  xti  ytj  d2x

dt2
i  d2y

dt2
j.

 In three dimensions, at   xt,yt, zt    d2x
dt2

, d2y

dt2
, d2z

dt2


 xti  ytj  ztk  d2x
dt2

i  d2y

dt2
j  d2z

dt2
k.

Since velocity is a vector that shows both the speed of motion and the direction of motion,
and since acceleration is the rate of change of velocity, acceleration reflects both how the
speed of motion is changing and how the direction is changing. In constrast, the unit
tangent vector shows only the direction of motion, so its rate of change, Tt, reflects only
how the direction is changing. (In other words, Tt tells us nothing about the speed of
motion, so Tt tells us nothing about how the speed of motion is changing.)

The magnitude of acceleration is at  |at|.

 In two dimensions, at  xt2  yt2  d2x
dt2

2
 d2y

dt2

2
.

 In two dimensions, at  xt2  yt2  zt2  d2x
dt2

2
 d2y

dt2

2
 d2z

dt2

2
.

In the case of the parabola discussed above, at   0,4  and at  4. This is a case of
constant acceleration.

In the case of the helix discussed above, at   3cos t,3sin t, 0  and
at  9cos2t  9sin2t  3. In this case, the magnitude of acceleration is constant, but
acceleration itself is not constant (its direction is changing).
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For two-dimensional motion, suppose we have a value of t where xt  0 and yt  0.
Then vt will be a nonzero scalar multiple of j and hence the curve will have a vertical
tangent line at the point in question. On the other hand, if we have a value of t where
yt  0 and xt  0, then vt will be a nonzero scalar multiple of i and the curve has a
horizontal tangent line at the point in question. If xt and yt are both nonzero, the
curve has an oblique (or slanted) tangent line at the point in question. If xt  0 and
yt  0, then the curve has a cusp at the point in question. At this point, there may or may
not be a tangent line; if there is a tangent line, it could be vertical or horizontal or oblique.
At any point where the curve has a horizontal or oblique tangent line, the tangent line has a
slope, which is dy

dx
. If the curve is smooth at this point, then dy

dx
 yt

xt
. This equation is not

applicable at a cusp. For instance, we saw earlier that the curve x  t2, y  t3 has a
horizontal tangent line when t  0, i.e., at the point 0,0, so dy

dx
 0 at that point, but this

point is a cusp, so the formula dy
dx

 yt
xt

does not apply (if we tried to apply it, the result

would be undefined).

At any smooth point, dy
dx

is positive and the tangent line is rising when xt and yt are both
positive or both negative; dy

dx
is negative and the tangent line is falling when xt is positive

and yt is negative or vice versa.

For the circle x  3cos t, y  3sin t, we have vt   3sin t, 3cos t . v0   0,3   3j
and v   0,3   3j, so the circle has vertical tangent lines when t  0 and t  , i.e.,
at the points 3,0 and 3,0. v 

2    3,0   3i and v 3
2    3,0   3i, so the

circle has horizontal tangent lines when t  
2 and t  3

2 , i.e., at the points 0,3 and
0,3. vt is never zero because the sine and cosine functions are never simultaneously
zero; hence the circle has no cusps.

The Orthogonal Derivative Theorem: Any vector-valued function with constant magnitude
is always orthogonal to its own derivative.
 For a position function rt, if rt is constant (i.e., if our moving particle has a fixed

distance from the origin), then rt and vt are orthogonal. This applies to motion
upon a circle or sphere centered at the origin.

 For a velocity function vt, if vt is constant (i.e., if our moving particle has a fixed
speed), then vt and at are orthogonal.

 By definition, Tt has constant magnitude (because it is a unit vector). Thus, Tt
and Tt are orthogonal.

Proof:
Let rt be a vector-valued function. Suppose rt  c for all t. Then rt2  c2 for all t.
rt2  rt  rt, so rt  rt  c2 for all t.
Differentiate both sides of this equation with respect to t...
d
dt
rt  rt  d

dt
c2

The right side of this equation is 0. For the left side, we apply the Product Rule...
rt  rt  rt  rt  0
rt  rt  rt  rt  0
2 rt  rt  0
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rt  rt  0
Hence, rt and rt are orthogonal.
QED.

For the circle x  3cos t, y  3sin t, we have rt   3cos t, 3 sin t , vt   3sin t, 3cos t 
and at   3cos t,3sin t . rt  vt  9cos t sin t  9sin tcos t  0, and
vt  at  9sin tcos t  9cos t sin t  0. This confirms the Orthogonal Derivative Theorem.
(Notice that with this parameterization, the speed of motion is fixed: vt  3 for all t. )

3. Integration of Vector-Valued Functions:

Given two vector-valued functions ut and wt, if ut  wt for all t in an open interval,
then wt is the derivative of ut, and ut is an antiderivative of wt. (An antiderivative
of wt is a function whose derivative is wt. In other words, it is a function that you can
differentiate to obtain wt. )

For example, consider ut   t2, sin t  and wt   2t, cos t . ut  wt for all
t  ,, so wt is the derivative of ut, and ut is an antiderivative of wt.

Pay close attention to the wording used above. We say wt is “the” derivative of ut
because ut has a unique derivative, but we say ut is “an” antiderivative of wt because
wt will have infinitely many antiderivatives. For any constant vector C, the function
ut  C is an antiderivative of wt, because d

dt ut  C  d
dt
ut  d

dt
C  ut  0 

ut  wt. The collection of all antiderivatives of wt is called the indefinite integral of
wt and is denoted wt dt. We may write wt dt  ut  C, where C is an arbitrary
constant vector. The indefinite integral of wt can also be referred to as the general
antiderivative of wt.

In the above example, the general antiderivative of  2t, cos t  is  t2, sin t   C.

In two-dimensional space, C can be expressed as  C1,C2 . In three-dimensional space,
it can be expressed as  C1,C2,C3 . Thus, in the above example, we can write the
general antiderivative of  2t, cos t  as  t2, sin t    C1,C2 , or as  t2  C1, sin t  C2 .

 In two-dimensional space, if wt   xt,yt , then wt dt    xt,yt  dt 

  xt dt,  yt dt . We could also write wt dt  xti  ytj dt 

 xt dt i   yt dt j.
 In three-dimensional space, if wt   xt,yt, zt , then wt dt 

  xt,yt, zt  dt    xt dt,  yt dt,  zt dt . We could also write

wt dt  xti  ytj  ztk dt   xt dt i   yt dt j   zt dt k.
Thus, the integration operator distributes over the components of a vector-valued function,
just like the differentiation operator. When we integrate each component, we obtain an
arbitrary constant for each one; be sure to use subscripts for the arbitrary constants, since if
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you just wrote C for each one, you’d be implying all the constants are the same, which is not
generally the case. Alternatively, you could separate out the constants into the single vector
term C.

For example,   t3, 1
t , sec

2t  dt    t3dt,  1
t dt,  sec2t dt  

 1
4 t

4  C1, ln|t|  C2, tan t  C3 , or  1
4 t

4, ln|t|, tan t   C.

A generic antiderivative of wt can be denoted Wt.

A particular antiderivative can be dictated by an initial condition. For instance, suppose
we seek the antiderivative of wt   2t, cos t  whose value when t  

2 is  5,7 . In
other words, find Wt so that W 

2    5,7 . We already know that the general
antiderivative of  2t, cos t  is  t2  C1, sin t  C2 . Hence, the challenge is to find the
necessary values of the constants C1 and C2. 

2

2
 C1  5, so C1  5  2

4  202

4 ,
and sin 

2  C2  7, so C2  6. Hence, we want the particular antiderivative Wt 
 t2  202

4 , sin t  6 . We could also write this as  t2, sin t    202

4 , 6 .

Here is a physics application: Suppose a particle is moving through space with acceleration
at   12t2  2, 3

4 t
, 50e5t . At t  1, its position is  10,1,2e5  13  and its velocity is

 11, 3
2 , 10e

5  4 . Let us find its position and velocity functions. First, we will find the
velocity function by integrating the acceleration function.   12t2  2, 3

4 t
, 50e5t  dt 

 4t3  2t  C1, 3
2 t  C2, 10e5t  C3 . When t  1, we get  6  C1, 3

2  C2, 10e5  C3  
 11, 3

2 , 10e
5  4 , so C1  5, C2  0, and C3  4. Thus, our velocity function is vt 

 4t3  2t  5, 3
2 t , 10e5t  4 . Next, we will find the position function by integrating the

velocity function.   4t3  2t  5, 3
2 t , 10e5t  4  dt 

 t4  t2  5t  D1, t3/2  D2, 2e5t  4t  D3 . When t  1, we get
 7  D1, 1  D2, 2e5  4  D3    10,1,2e5  13 , so D1  3, D2  0, and D3  9. Thus,
our position function is rt   t4  t2  5t  3, t3/2, 2e5t  4t  9 .

For any real numbers a and b, 
a

b

wt dt is known as the definite integral of wt over the

interval (on the t axis) with endpoints a and b. a and b are known as the limits or
boundaries of integration. Whereas the indefinite integral of wt gives us an infinite
collection of vector-valued functions, the definite integral of wt gives us a particular vector
(rather than a vector-valued function). Note the similarity to what you learned in Calculus I:
If fx is a real-valued function, then the indefinite integral of fx gives an infinite collection
of real-valued functions, whereas the definite integral of fx gives us a particular real
number (rather than a real-valued function).
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 In two-dimensional space, if wt   xt,yt , then 
a

b

wt dt  
a

b

 xt,yt  dt 

 
a

b

xt dt,
a

b

yt dt . We could also write 
a

b

wt dt  
a

b

xti  ytj dt 


a

b

xt dt i  
a

b

yt dt j.

 In three-dimensional space, if wt   xt,yt, zt , then 
a

b

wt dt 


a

b

 xt,yt, zt  dt   
a

b

xt dt,
a

b

yt dt,
a

b

zt dt . We could also write


a

b

wt dt  
a

b

xti  ytj  ztk dt  
a

b

xt dt i  
a

b

yt dt j  
a

b

zt dt k.

Thus, the definite integral distributes over the components of a vector-valued function, just
like the indefinite integral.

We can adapt the Fundamental Theorem of Calculus to our study of vectors: If Wt is any

antiderivative of wt, then 
a

b

wt dt  Wb Wa. This may be denoted Wta
b

We have already seen that  t2, sin t  is an antiderivative of  2t, cos t . Hence,


/4

/2

 2t, cos t  dt   t2, sin t /4
/2   2

4 , 1    2

16 , 2
2    2

4  2

16 , 1  2
2  

 32

16 , 2  2
2 .

4. Further Discussion of the Unit Tangent Vector’s Derivative:

Tt is a vector-valued function of time t, but it is always a vector with a fixed length
(namely, length one). Hence, as time varies, the only thing about Tt that can change is its
direction. The rate at which our particle changes direction is found by differentiating Tt
with respect to time, in other words, by finding Tt. But bear in mind, the derivative of a
vector-valued function is another vector-valued function. If we wish to express the rate of
direction change as a scalar, then we compute the magnitude of Tt.

|Tt| can be thought of as the speed of direction change. In contrast, vt  |vt| is the
speed of motion. Whenever we speak of “speed,” if we don’t specify which kind of speed
we mean, then we implicitly mean speed of motion.
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Since Tt is undefined when vt  0, Tt and |Tt| are likewise undefined when vt  0.
Thus, in the following discussion, we assume vt is nonzero.

Theorem 1: Tt  vt3 vt2at  vt  at vt  vt2at  vtat vt
vt3

.

Proof:

Since Tt  1
vt

vt, to differentiate Tt, we apply the Product Rule, giving us

Tt  1
vt

vt  1
vt

vt  1
vt

vt  1
vt

at.

1
vt

 xt2  yt21/2 in two dimensions, and 1
vt

 xt2  yt2  zt21/2 in three

dimensions. To differentiate 1
vt

, we apply the Chain Rule. In three dimensions,
1

vt
  1

2 xt
2  yt2  zt23/22xtxt  2ytyt  2ztzt 

xt2  yt2  zt23/2xtxt  ytyt  ztzt 
vt3 vt  at. In two dimensions, we get the same result.

Now we have Tt  vt3 vt  at vt  vt1at
 vt1at  vt3 vt  at vt
 vt3 vt2at  vt  at vt

 vt2at  vtat vt
vt3

.

QED.

We could also write Tt as vt3 vt  vt at  vt  at vt or vtat at  vtat vt
vt3

.

For brevity, we may write T  v3 v2a  v  a v  v2a  va v
v3



v3 v  v a  v  a v  vv a  va v
v3

.

It follows that |Tt|  vtat at  vtat vt
vt3


vtat at  vtat vt

vt3
.

For brevity, we may write |T| 
vv a  va v

v3
.

Theorem 2: vt  at  vt2Tt  Tt

The proof of Theorem 2 will be postponed until the end of this section.

For brevity, we may write v  a  v2T  T.

Theorem 2 can be used in two-dimensional space if we assign a third component of 0 to our

10



position, velocity, and acceleration functions.

Actually, we don’t really apply Theorem 2 in practice. The only significance of Theorem 2 is
that we use it in proving the following theorem (which is useful in practice)...

Theorem 3: |Tt|  vt2|vt  at| 
vt  at

vt2

Proof:
By Theorem 2, vt  at  vt2Tt  Tt.
Therefore |vt  at|  vt2|Tt  Tt|.
|Tt  Tt|  |Tt||Tt| sin 

2  |Tt|. (Here we use Theorem 3 from Section 12.4.)

Hence, |vt  at|  vt2|Tt|

It follows that |Tt|  vt2|vt  at| 
vt  at

vt2
.

QED.

For brevity, we may write |T|  v2|v  a| 
v  a

v2
.

We now have two formulas for |T|, namely,
vv a  va v

v3
and

v  a

v2
. You may use whichever

you prefer, but you’ll often find the second more convenient. In either case, you can find |T|
once you know v, a, and v.

CAUTION: Theorem 3 does not imply that Tt  vt  at

vt2
. This is not a correct equation!

Theorem 3, like Theorem 2, can be used in two-dimensional space if we assign a third
component of 0 to our position, velocity, and acceleration functions. This will be illustrated
in the following example.

Suppose a particle is moving along the parabola y  x2 with position function rt   t, t2 .
Then:
 vt   1,2t 

 vt  1  4t2  1  4t21/2

 vt  vt  vt2  1  4t2

 vt3  1  4t23/2 and vt3  1  4t23/2

 Tt  1  4t21/2  1,2t   1,2t

14t2

 at   0,2 
 vt  at  10  2t2  4t

 Tt  1  4t2a  4tv

1  4t23/2
by Theorem 1.

The numerator is 1  4t2  0,2   4t  1,2t  
 0,2  8t2    4t, 8t2    4t, 2   2  2t, 1 ,
so Tt  22t,1

1  4t23/2
or 2

1  4t23/2
 2t, 1 , or 21  4t23/2  2t, 1 
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 |Tt|  21  4t23/2| 2t, 1 |  21  4t23/2 4t2  1 
21  4t23/21  4t21/2  21  4t21  2

1  4t2
.

(We got this directly, without using Theorem 3.)
 vt  at   1,2t, 0    0,2,0    0,0,2 

(We got this directly. We could have used Theorem 2, but it would be very messy.)
 |vt  at|  2
 |Tt|  2

1  4t2
by Theorem 3.

The formula T  vv a  va v
v3

gives us T in terms of v, v, and a. In the above example, we
were able to write the result entirely in terms of t and simplify down to a nice, clean formula.
This is not always possible, or it may be prohibitively difficult. In some cases, we may get
v  v, v  a, and v3 in terms of t, and then leave T in terms of t, v, and a. If we had done so
in the above example, we would have left T written as 14t2a  4tv

14t23/2
.

All these functions may be evaluated at any given value of t. For example, when t  3, we
get:
 r3   3,9 
 v3   1,6 
 v3  37
 v3  v3  v32  37
 v33  373/2 and v33  373/2

 T3  371/2  1,6   1,6

37

 a3   0,2 
 v3  a3  12
 T3  2

373/2  6,1 

 |T3|  2
37

If all we ultimately need is the speed of direction change at a particular instant, then all we
need do is find vt, at, and vt, then evaluate these at the specified value of t, then
compute v2, v  a, and |v  a|, and finally divide |v  a| by v2. Under these circumstances,
we don’t need to find Tt or Tt at all. For instance, in the preceding example, suppose
our goal had been to find |T3|. As soon as we had vt   1,2t , at   0,2 , and
vt  1  4t2 , we could evaluate v3   1,6 , a3   0,2 , and v3  37 , then
compute v32  37, v3  a3   1,6,0    0,2,0    0,0,2 , whose magnitude is 2,
and then divide: 2  37  2

37 .

Suppose a particle is moving along a helix centered at the z axis, with position function
rt   cos t, sin t, t3 , and say we want to find the speed of direction change when t  5.
We can proceed as follows:
 vt    sin t, cos t, 3t2 
 at   cos t, sin t, 6t 

 vt  sin2t  cos2t  9t4  1  9t4
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 v5    sin5, cos5, 75 
 a5   cos5, sin5,30 
 v5  5,626

 v52  5,626
 v5  a5   30cos5  75sin5, 30 sin5  75cos5, 1 
 |v5  a5|  6,526

 |T5| 
6,526

5,626  0.014359.

Here, we found |T5| using Theorem 3, i.e., using the formula |Tt| 
vt  at

vt2
. If we had

used the formula |Tt| 
vtat at  vtat vt

vt3
, we would have gotten |T5| 

36,715,276

5,6263/2 ,

which is equivalent, but it would have been more work.

In the above problem, since we were only looking for |T5|, we did not need to find Tt
and Tt. If we had found them, we would have gotten Tt  sin t,cos t,3t2

1  9t4
and

Tt  1  9t4a  18t3v

1  9t43/2
. This is a situation where we would not try to simplify Tt, i.e., we

would leave it in terms of t, v, and a. Furthermore, in this problem we did not bother to find

|Tt| in terms of t. If we had, we would have gotten |Tt| 
1  36t2  9t4

1  9t4
. But this would

have required considerable work.

5. The Derivative of Speed of Motion:

So far, we have examined the following derivatives:
 Velocity is the derivative of position. d

dt
rt  rt  vt

 Acceleration is the derivative of velocity. d
dt
vt  vt  at

 Tt is the derivative of Tt. d
dt
Tt  Tt

Now we will discuss one more derivative: The derivative of speed of motion, vt.
d
dt
vt  vt.

vt is a scalar-valued function. It is obviously not the same thing as accleration, since
acceleration is a vector. You might guess that vt is the magnitude of accleration, but this
guess is incorrect. For instance, in the case of the helix rt   cos t, sin t, t3 , we have
vt  1  9t4 and at   cos t, sin t, 6t , so vt  1

2 1  9t41/236t3  18t3

1  9t4
,

whereas at  1  36t2 .

Bear in mind, we have discussed two kinds of speed: speed of motion, which is vt, and
speed of direction change, which is |Tt|. When we use the word “speed” without
specifying which kind we mean, it is always assumed we mean speed of motion.
Technically, vt is the rate of change of speed of motion, but we can say, more briefly,

13



vt is the rate of change of speed. It tells us how quickly speed (of motion) is changing.

We will not address the rate of change of speed of direction change, which would be
d
dt |Tt|.

We assume, in the following discussion, that we are dealing with smooth motion, so vt is
nonzero.

Theorem 4: vt  vt1 vt  at  vtat
vt

Proof (in the case of three dimensions):
Since vt  xt2  yt2  zt21/2,
vt  1

2 xt
2  yt2  zt21/22xtxt  2ytyt  2ztzt 

xt2  yt2  zt21/2xtxt  ytyt  ztzt 

vt1 vt  at  vtat
vt

.

QED.

Let us confirm Theorem 4 in the case of our helix. We have already established that vt 
  sin t, cos t, 3t2 , at   cos t, sin t, 6t , vt  1  9t4 and vt  18t3

1  9t4
.

vt  at  cos t sin t  cos t sin t  18t3  18t3, so the theorem is confirmed.

Corollary to Theorem 4: vt  at  vtvt

Theorem 5: Tt  vt2vtat  vtvt  vtat  vtvt

vt2
.

Proof:

Since Tt  1
vt

vt, to differentiate Tt, we apply the Product Rule, giving us

Tt  1
vt

vt  1
vt

vt  1
vt

vt  1
vt

at.

1
vt

  d
dt
vt1  vt2vt

So Tt  vt2vtvt  vt1at  vt1at  vt2vtvt 

vt2vtat  vtvt  vtat  vtvt

vt2
.

QED.

Theorem 5 could also be proved using Theorem 1 and the Corollary to Theorem 4:
Tt  vt2at  vtat vt

vt3
 vt2at  vtvt vt

vt3
 vtvtat  vt vt

vt3
 vtat  vtvt

vt2
.
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Theorem 6: at  vtTt  vtTt.

Proof:
Since Tt  1

vt
vt, vt  vtTt.

at  d
dt
vt  d

dt
vtTt  vtTt  vtTt, by the Product Rule.

QED.

Earlier, we postponed the proof of Theorem 2. We did so because the proof involves vt,
which had not yet been discussed. We are now in a position to examine the proof. We will
make use of Theorem 6. This is permissible, because Theorem 6 is free-standing–it does
not depend on Theorem 2 or any of our other theorems. (If Theorem 6 depended on
Theorem 2, we could not use it in proving Theorem 2, since doing so would be circular
reasoning, which is invalid.)

Proof of Theorem 2:

Since vt  vtTt and at  vtTt  vtTt,
vt  at  vtTt  vtTt  vtTt.

By the Scalar Multiple Rule for cross products (discussed in Section 12.4), we can factor out
vt, giving us vtTt  vtTt  vtTt.

By the Distributive Property, Tt  vtTt  vtTt 
Tt  vtTt  Tt  vtTt.

By the Scalar Multiple Rule, we get
vtTt  Tt  vtTt  Tt.

Tt  Tt  0 by Theorem 2 of Section 12.4.

So now we have vt0  vtTt  Tt 
0  vtTt  Tt  vtTt  Tt.

Finally, we have vtvtTt  Tt  vt2Tt  Tt

QED.
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